Discharge Process of Li/polymer Electrolyte/S Cell at Room Temperature

H.S. Ryu*, K.Y. Kang*, K.W. Kim*, B.Y.Hur*, J.H. Ahn*, J.Y.Lee**, H.J. Ahn*

* ReCAPT, Gyeongsang National University, Chinju, 660-701, KOREA

**Dept. of Material Science and Engineering, KAIST, Taejon, KOREA

Introduction

The lithium/sulfur cell was an extremely attractive redox couple because of high theoretical specific energy of 2600Wh/kg(1672mAh/g-sulfur), assuming complete reaction to the Li₂S. However, it has been very difficult to make a good Li/S cell because of high resistivity and reactivity of sulfur [1,2]. Recently, Cairn's group [3] investigated on the Li/polymer electrolyte/S cell using composite sulfur cathode with carbon and polymer. The discharge capacity of sulfur electrode depended on the operating temperature. The utilization of sulfur cathode at 90°C was over 85%. However, the discharge capacity at room temperature was 752mAh/g-sulfur (45% utilization). There was no study on the discharge mechanism of the Li/polymer/S cell. In this study, we investigated on the discharge process of Li/S cell at room temperature (25°C), and also improved the utilization of sulfur cathode.

Experimenta

Sulfur electrodes were prepared by glass casting using sulfur, carbon black, PEO, LiCF₃SO₃ powders. The PVdF-HFP (Kynar 2801) film was used as electrolyte. The components were dried at 50 °C in a vacuum atmosphere, and then Li/S cell was assembled in argon atmosphere. In order to investigate on the discharge process, the discharge products were tested by X-ray diffractometer(XRD), Differential Scanning Calorimeter(DSC), Scanning Electron Microscope(SEM), and Energy Dispersive Spectrometer (EDS).

Results and discussion

The Discharge curve of Li/PVDF-HFP/S cell was shown in Fig. 1. The capacity was 1364mAh/g-sulfur, which was higher than previous results. Chu[4] reported the 900mAh/g-S using Li/PVDF-HFP/S cell at 30°C, and Cairns obtained 752mAh/g-S at 23°C with a PEGDME-based electrolyte. The curve had two plateaus, which might be related with two different electrochemical reactions between sulfur and lithium.

Reference

- 1. E.Peled, Y.Sternberg, A.Gorenshtein, and Lavi, J. Electrochem. Soc., 136,1621 (1989)
- 2. R.D.Rauh, K.Mabraham, G.F.Pearson, J.K.Surprenant, and S.B.Brummer, J. Electrocem. Soc., 126, 523 (1979)
- 3. D.Marmorstein, T.H.Yu, K.A.Striebel, F.R.McLarnon, J.Hou, and E.J.Cairns, Journal of Power Sources 89, 219 (2000)
- 4. M.Y. Chu, United States Patent No 5,814,420 Sep.

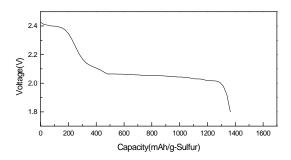


Fig. 1. Discharge curve of Li/polymer electrolyte/S